Artigos

Arterial kateter 180x180 - Métodos Directos (Invasivos)

Métodos Directos (Invasivos)

A medição invasiva da PA implica sempre a canulação de uma artéria e a conexão da mesma a um sistema de leitura de pressão. Para medir uma pressão invasiva é necessário um transdutor, um amplificador e um monitor/gravador.
O cateter arterial fica conectado a um prolongamento, habitualmente com uma torneira de três vias para colheitas de sangue, que termina no transdutor, o qual está por sua vez ligado a um monitor. Do transdutor parte outro prolongamento até um saco de soro pressurizado. Nesta ligação existe uma válvula (que deixa passar soro a 3 ml/hora), uma torneira de três vias, que permite calibrar o sistema com a pressão atmosférica, e um sistema de abertura da válvula para se poder fazer um flush do sistema e dos prolongamentos com o soro pressurizado.
A PA varia continuamente com a sua pulsatibilidade característica. Estas variações da PA são transmitidas através do cateter arterial a uma coluna de água. Uma vez que a água é um fluido não compressível, as variações de pressão dentro da artéria são transmitidas por esta coluna de água, a qual termina no transdutor.
O transdutor “sente” as oscilações da PA numa membrana, o diafragma, o qual está em contacto com a coluna de água, contínua até ao lúmen arterial. Esse diafragma está ligado a um sistema elétrico, denominado ponte de Wheatstone, o qual tem a capacidade de transformar variações de pressão em sinais eléctricos (por regra 10 mmHg de pressão geram 50 U.V). Posteriormente, o sinal eléctrico é amplificado com o mínimo de distorção possível, é filtrado para retirar o “ruído” e é apresentado num osciloscópio, num monitor ou num registo em papel.
Estes sistemas de monitorização, através de coluna líquida, têm alguns problemas físicos que importa especificar: a frequência de resposta do sistema, a frequência natural relativa e o amortecimento (dumping).
A frequência de resposta do sistema é uma das características importantes na capacidade de medir sinais pulsáteis com diferentes comprimentos de onda. Se a frequência de resposta do sistema for inferior à do sinal biológico, a pressão medida vai ser inferior à real, porque o sistema não reproduzirá frequências elevadas.
Por seu lado, a frequência natural relativa é a frequência com a qual as oscilações atingem a amplitude máxima, isto é, a frequência em que o sistema entra em ressonância.
Essa depende das características do cateter e dos prolongamentos (os quais devem ter menos de 1 metro). O sistema “vibra” ou entra em ressonância, se a frequência do sinal se aproxima da frequência natural do sistema; neste caso a pressão sistólica é mais elevada, a diastólica mais baixa e há grandes oscilações da curva de PA, mas a pressão média mantém-se perto da real.
O amortecimento ou damping do sistema traduz a perda de sinal durante a transmissão. Para conseguir uma boa transmissão das ondas de pressão, os prolongamentos devem ser rígidos, de forma a não distenderem (como acontece aos sistemas de infusão de soros) e estar todos preenchidos com água. Se houver bolhas de ar ou coágulos, mesmo que pequenos, estes vão amortecer a transmissão da pressão. Cada sistema tem o seu coeficiente de damping, o qual descreve a rapidez com que um sistema oscilatório volta à posição de repouso.
A aplicação duma infusão rápida de soro pressurizado (flush) através da linha arterial permite avaliar a performance do sistema de leitura. Esse início e suspensão brusca duma pressão põem todo o sistema em vibração, e estas vibrações podem ser medidas de forma a determinar a frequência de ressonância do sistema.
No primeiro caso, a frequência é de 25 Hz e a leitura do sinal é boa. No segundo caso, a frequência de ressonância é menor e o sistema é pouco amortecido (underdamped), o que resulta numa amplificação da PA sistólica e diminuição da diastólica. No terceiro caso, o sistema está sobreamortecido (overdamped), o que resulta numa curva de PA com pouca amplitude. Nestas duas situações, se não se conseguir a desobstrução do sistema, deve ser ponderada a substituição da linha arterial.
Um bom sistema de leitura deve apresentar uma frequência natural relativa elevada e um coeficiente de damping óptimo.

DSC 4339 180x180 - O futuro da monitorização hemodinâmica

O futuro da monitorização hemodinâmica

Parafraseando Niels Bohr, prediction is very difficult, especially about the future. Portanto, sem querer correr grandes riscos diria que o futuro da monitorização hemodinâmica poderá residir no desenvolvimento de novas tecnologias, novos parâmetros hemodinâmicos, novos métodos de análise e de avaliação. Terá aqui um papel importante a miniaturização e desenvolvimento de novos sensores, o desenvolvimento de técnicas não invasivas para obter parâmetros que anteriormente só se conseguiam com métodos invasivos, avaliação direta ou indireta de parâmetros que traduzem a disfunção a nível celular, nomeadamente o VO2.
No entanto, não nos podemos esquecer que os sistemas biológicos são sistemas complexos, abertos e dinâmicos. Este sistema unificado está interligado pelas mais complexas relações e equilibrado. E presentemente sabe-se que a medição de um parâmetro isolado não é suficiente para inferir o comportamento das outras variáveis ou componentes.
Outro aspecto é que a “saúde” não pode ser entendida como uma situação estacionária e estática. Pelo contrário, a “saúde” é caracterizada por marcada variabilidade, a qual é não linear e funciona em diversas escalas diferentes. Por vezes a “doença” caracteriza-se apenas pela perda dessa variabilidade e complexidade.
Por último, estas potenciais novas tecnologias e parâmetros devem ser bem estudados e validados antes de serem introduzidos na clínica para que os dados que transmitem se traduzam em objetivos terapêuticos com impacto positivo no prognóstico dos doentes.
o